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Abstract—Being able to produce a wide variety of layouts for
a same graphs may prove useful when users have no preferred
visual encoding for their data. The first contribution of this
paper is a enhanced force-directed layout capable of producing
different layouts of a same graph. We turn a well known force-
directed algorithm (GEM) into a highly parametrizable layout
and control it from a genetic algorithm framework.

The genetic algorithm allows to efficiently explore the
parameter space of this highly parametrisable layout. The
search process relies on the capability of the system to evaluate
the similarity between two drawings. The second contribution
of this paper is a similarity metric used as a fitness function for
the genetic algorithm. Its main features are its computational
cost and its insensitivity to planar homotheties.
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I. INTRODUCTION

The graph drawing community has introduced a series of

useful aesthetics for drawing graphs [1], [2], most of which

can be translated into optimization goals algorithms try to

reach. Many graphs – those with no special properties such

as begin tree-like, acyclic or planar – however do not call for

any specific aesthetics; except those a user may have in mind

because he/she has specific knowledge obtained from the

data, or simply because of individual preferences. There is

however no one algorithm that may serve each user’s specific

needs and/or graphical preferences.

As a consequence, it may be necessary to offer different

drawings of a same graph to satisfy all users. Different ap-

proaches may be followed to solve this problem. A possible

strategy is to run different algorithms on a same graph to

produce different layouts. However, this option presents two

main drawbacks. A strong expertise on graph drawing is

required to master a wide variety of algorithms, and there is

currently no software offering an exhaustive panel of layout

algorithms. The second drawback is the impossibility to

systematically produce a hybrid layout of a graph combining

different algorithms. Producing variations of a layout, or

applying variations on subparts of a same graph using

parameter tuning may also be tedious. According to our

own experience, we may even have no guarantee that the

resulting layout will indeed differ from the use of default

parameters.

This paper presents an approach to generate different

drawings of a same graph using a unique algorithm. We

designed a modified version of a force-directed layout,

turned into a highly parametrizable algorithm. This modified

algorithm is combined with a genetic algorithm (GA) to

automate the generation of a parameter sets controlling the

behavior of the force-directed layout. The whole framework

can be steered by the user to influence the behavior and

results offered by the genetic algorithm. The first part

of the paper reviews past approaches who have partly

addressed this problem (section I-A). Section II presents

our algorithm and its different features. A similarity metric,

used to compare different drawings of a same graph is

described in section IV. Results are presented and discussed

in section V.

A. Related work

Since the seminal work of Tutte [3], the Graph Drawing

community has developed a rich panel of algorithms to lay-

out different classes of graphs [1], [2]. Force-directed layouts

(sometimes also called spring embedders) form an important

part of the Graph Drawing body of algorithms, mainly

because they can be used to draw graphs with no specific

properties. The work by Fruchterman-Reingold [4] and by

Kamada and Kawai [5] are part of the most well known and

largely used force-directed algorithms. The GEM algorithm

published later by Fricke [6] proposed improvements by

introducing additional parameters, and incidentally had a

greater influence on our work. Several other improvements

were proposed, mainly tackling scalability issues [7], [8],

[9] or relying on multi-level approaches [10], [11], [12]

sometimes exploiting hardware [13], [14].

In his 2011 keynote talk, Brandes [15] underlined the fact

that most force-directed layouts do not succeed at delivering

insight on the underlying data. Brandes’ warning should

be seriously considered, especially when visualization is

targeted at a novice audience. In our opinion, part of the

problem pointed at by Brandes comes from the inability of

any given force-directed model to adapt to the topology of a

graph. Some authors have produced higher level algorithms

pre-processing a graph trying to detect topological features,

then applying different layout algorithms to different parts

of the graph [12]. When no feature can be found, these

approaches unfortunately are as unproductive as any force-

directed layout. Other approaches try to improve the overall

quality of the layout by focusing on the initial placement of
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nodes [16], with no guarantee whatsoever of being able to

vary the final output.

The work by Biedl et al. [17] is closer in spirit to our

approach. Starting from the assumption that novice users

cannot specify their needs in terms of graph layout, their

method consists in generating different drawings for a same

graph, from which the user can choose. The algorithm can

not however deal but with small graphs, and is also limited

in terms of diversity of layouts because restrictions are

inherited from the GLIDE system they use [18].

Previous attempts at using genetic algorithms to draw

graphs have been made. Eloranta et al. [19] used a GA to

draw graphs on a grid, while Barreto et al. [20] considered

layouts with coordinates in R
d. In both approaches, the

genomes stored the node coordinates, so the aim of the

GA was to produce a layout of a graph by selecting

candidate genes (node coordinates) and mixing them. These

approaches are not totally satisfying, because initial genomes

(positions) are randomly assigned, and because the GA

may only produce a layout by combining existing node

coordinates without reference to any graph property. The

path we follow is totally different. In our GA, genomes do

not store node positions; they store parameters that guide

the behavior of a layout algorithm.

II. A HIGHLY PARAMETRIZABLE GEM ALGORITHM

This section presents the algorithm we designed in order

to obtain a wide variety of layouts for a same graph. The

basic ingredient of our approach is to highly parametrize an

existing force-directed layout algorithm. The management

of this large set of parameters is taken in charge by using a

genetic algorithm (GA). Using the GA ensures a thorough

search of the parameter space.

The force-directed layout algorithm GEM [6] adds several

features to the classical force directed paradigm. As in most

force-directed algorithm, a temperature is used to speed-up

convergence of the computations. Each node is assigned an

initial individual temperature, so nodes stabilize as they cool

down. The algorithm also tries to detect whether a change

in the layout is due to a rotation and/or oscillation to allow

a speed-up of stabilization. Other parameters are used to

tune the algorithm. Each vertex has a mass so heavier nodes

help the layout to stabilize. As with most force-directed

models, GEM uses coefficients to tune the effect of attractive

and repulsive forces. GEM also uses the barycenter of the

layout to avoid components to be pushed away from each

other, again using a coefficient to dose the attractive effect

of the barycenter. A random force (and a coefficient) is also

applied locally so the algorithm may get out of local minima

situations. Finally, adjacent nodes try to reach an ideal edge
length.

Apart from the vertex temperature and mass, all

parameters are global and defined at the graph level. Fig. 2

(1a, 2a) shows different drawings obtained with the basic

version of GEM (using default parameters).

A. Vertex parametrization

In order to reach a maximum of possible algorithm

behaviors, leading to different outputs, we individualize all

parameters and define their values at the node level. That is,

nodes get assigned coefficients for all forces (attractive, re-

pulsive, barycenter, etc.) independently. When dealing with

larger graphs, the number of parameters makes it impossible

for a user to set them manually. Indeed, using 6 parameters

per vertex requires to deal, set and manage 300 parameters

for a graph with 50 vertices only.

Moreover, our experience shows that parameter tuning is

tricky. A slight modification of a parameter may produce no

change in the resulting drawing; conversely, more radical

changes may simply impair the algorithm from finding an

acceptable layout. Hence, we use a genetic algorithm to

(i) automate the management of parameter values and (ii)

combine them and efficiently search the space of all possible

combinations. The search strategy will be discussed later.

B. Exploring the parameter space

Parameter values are managed using a GA and stored as

genomes. The algorithm thus deals with a population of

genomes, and supervises the evolution of future genomes.

A gene corresponds to a (key/value) pair together with a

third information indicating the domain within which the

parameter may vary (a bounded interval ⊂ R); a genome

thus corresponds to a list of (key/value) pairs. At each

generation, the population of genomes is evaluated – each

genome is assigned a score. Best genomes are selected

and form the next generation of the population. Two main

genetic operators are used: the crossover and the mutation.

A crossover takes two parent genomes as input and produces

a child or two children genomes. The first child inherits one

half of all genes from each parent. In the case where two

children are produced, the second child inherits of genes

unused in the production of the first child. A mutation

consists in randomly modifying the values of one or several

genes of a genome.

We shall limit the discussion of the GA we actually de-

signed to its fundamental features. A complete presentation

of the genetic algorithm and discussion of its features is

out of the scope of this paper [21]. The genetic algorithm

we have implemented is highly configurable and allows a

fine-grain control over population evolution.

III. GRAPH EVALUATION

This section describes the main features of the GA we

designed and focuses on the evaluation mechanism guiding

the exploration of the genome space.

In our case, the evaluation is a two-step process. We first

select genomes in the population and map their (key/value)
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pairs to nodes in the graph. The layout algorithm GEM is

then run using this set of parameters. The second part of

the evaluation consists in computing a fitness function for

each vertex of the graph taking the layout coordinates into

account.

The score assigned to a vertex can be accomplished in

two different manners discussed in the next sections. A first

(and most common) way is to compute a score based on

a set of graphical metrics (section III-A). Alternatively, we

may use a similarity metric used to compare early layouts

to target layout, in the learning phases of the GA.

This latter type of evaluation is called “auto-evaluation”.

Nodes are evaluated by comparing them to previously drawn

and similar vertices. Genomes of these previously drawn

vertices are stored in a database to enhance the learning

capabilities of the GA.

A. Graphical metrics

The score of a node is computed based on how well a node

has been positioned with respect to different node properties.

We list here the metrics we used in order to evaluate whether

the GA was able to find a good position for a node. Some of

these metrics use individual node metrics, other use metric

that are global to the whole graph.

Denote the graph as G = (V,E). Distance conservation
evaluates, for a given node u ∈ V , how close Euclidean

distance is to graph distance. That is, the metric is ob-

tained by calculating the standard deviation of all ratios

d(u, v)/dG(u, v) for all pairs of nodes (u, v), with v ∈ V .

Average edge length evaluates, for a given node u ∈ V ,

how close the Euclidean length of edges is to their individual

ideal length. That is, the metric is obtained by calculating

the standard deviation of all ratios d(u, v)/dG(u, v) for all

pairs of neighbor nodes (u, v), v ∈ NG(u).
Number of edge crossings counts the number of edges

that cross in the Euclidean drawing of the graph. The

graphical density of a node u counts the node in a circle

around u with a radius proportional to layout size√
n

.

The fitness function is a non-linear combination of all

these metrics. This combination can be customized in order

to change the behavior of the algorithm, searching different

parts of the parameter space, producing different types of

layouts.

1) Building a knowledge base for the GA: Defining a

good fitness function is however difficult, particularly for

novice users. This also relates to the impossibility of defining

in an absolute manner what a “good” drawing of a graph

is with no reference to the graph being drawn – ultimately

requiring to adapt the fitness function to each graph.

A solution to deal with this problem is to build a knowl-

edge database collecting “good” and “bad” drawings of a

same graph. To this end, genomes are stored together with

information describing the context in which they are being

evaluated. The context of a node is formed of different

measures related to the topology of its neighborhood: its

degree, clustering coefficient, betweenness centrality, and

eccentricity (see [22] for definitions of these metrics). The

behavior of a node in a given context is provided by the

values of all graphical metrics enumerated in the precious

section. In other words, the database stores genomes associ-

ated with a context together with the graphical metrics, in a

sense describing how they behave in this particular context.

During the learning phase, because the knowledge base

needs to be bootstrapped, a target layout is given along

with the graph. The fitness function then computes the

similarity between the laid out graph (using the genomes

being evaluated) and the target layout. In other words, the

similarity computed from graph metrics help decide whether

a node has been assigned a good position with respect to the

target layout.

With node context and behavior, it then becomes possible

to select all genomes that behaved well in a given context

bringing them into the population considered by the GA.

This allows a speed-up of the algorithm by starting with a

population taken from the database rather than initializing

the GA with a random population.

IV. GRAPH SIMILARITY

As we say in section III-A1, we use a similarity metric

as fitness function during database bootstrapping. We give

good layout for a graph, and the GA have to copy it.

In order to evaluate each genome, we need to evaluate

how each vertex is close to its target position. As this

metric is computed thousand times, it needs to have a

low computational cost. The second constraint is that the

similarity has to be insensible to any planar homothety,

as translation, rotation, scale or symmetry which could be

induced by GEM.

This task is very close to conducting a Procrustes anal-

ysis [23], trying to find a best superimposition minimizing

the overall distance between two point clouds applying a

combination of rotation, translation and rescale.

Biedl et al. [17] face a similar problem as they need to

determine how much two drawings of a graph are different

(they also group layouts into classes of more similar draw-

ings). They compute a one-to-one matching of nodes based

on distances between neighbor nodes. Once a matching is

found, they compute the distance between the two drawings

as the sum of distances between all pairs of vertices.

A. Triangle-based similarity

We now describe a method we designed to achieve

both efficiency and accuracy in computing graph similarity.

Nodes are considered as part of triangles; a triangle is

a subset of three pairwise nodes (adjacent or not). Two

triangles are considered similar when their angles match.
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Figure 1. Two layouts of a same graph and nodewise similarity between them (red/green for low/high node similarity).

This criteria is handy because it can be measured by testing

whether sidewise ratios are similar:

a
a′ ∼ b

b′ ∼ c
c′

where a, b, c and a′, b′, c′ respectively denote lengths of

the sides of the two considered triangles. Observe that

triangle similarity is invariant under planar homothety (i.e.

translation, rotation, scaling or symmetry) because these

transformations preserve ratios of side lengths. The rationale

underlying this similarity criteria is that layout similarity

follows when we have triangle similarity for all possible

triangles.

A naive approach to accomplish triangle similarity is to

compute ratios for all triangles in the layout. The computa-

tional cost of this naive approach would however compare

to a Procrustes analysis since there potentially are n3 trian-

gles to inspect. A more efficient and less costly solution

is possible. Assuming the two layouts to be similar, all

pairwise distances dL(u, v), dL′(u, v) between nodes should

match in both layouts L,L′. As a consequence, the ratios

r(u, v) = dL(u,v)
dL′ (u,v) should have null standard deviation. Let

σ2
G = 1

|V |−1

∑
{v}∈V,v �=u

(r(u, v)− r)2 denote the variance of

the ratios r(u, v). We define a similarity metric as

sG(u) =
√
σ2
G/r

where r the average value of r(u, v) for all v ∈ V . A main

feature of this metric is its invariance with respect to any

planar homothety, as all length ratios are preserved. As we

need to compute one similarity per node (and highlight most

displaced vertices), we compute a partial standard deviation

of the ratio r(u, v) with u fixed and v ∈ V, v �= u as the

similarity for the node u.

Fig. 1 shows two layouts of a same graph. Green bright

nodes correspond to highest similarity, while bright red

nodes are most dissimilar – observe the two red nodes with

incident edges forming spikes on the right image.

1) Local similarity: Similarity can be controlled

and somehow kept local by considering weights

dG(u, v) to compute a weighted average ru =
1

|V |−1

∑
{v}∈V,v �=u

dG(u, v)
kr(u, v) (and compute σ2

G

accordingly).

Positive and larger (integer) values of k forces the dis-

tances to farther nodes (from u) to be taken into account,

while negative values of k somehow restricts the metric to

nodes closer to u. Observe that this localized version of the

metric assumes the graph to be connected.

However, this modified version requires to compute

all pairwise node distances in the graph, prior to metric

computation. Its complexity being in O(n2), the global

time complexity of the metric is maintained.

V. RESULTS

This section presents results obtained on two different

graphs (Fig. 2). (Top row) The first target graph we used

models the word “HELLO” using nodes and edges – the

target nodes consists of horizontally aligned square-shaped

letters. Obviously, GEM totally ignores the graph models a

word and produces an abstract layout with no link whatso-

ever with the word “HELLO” (1a). This toy example shows

just how capable the GA, guiding a highly parametrized

force-directed algorithm to reproduce such a constrained

drawing (1b).

The second graph models a metabolic pathway (biomolec-

ular reactions), the plastids of Arabidpsis. GEM, as any
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Figure 2. Comparisons between layouts obtained with the original GEM algorithm (left) and our GA-enhanced version (right) for two different graphs.

force-directed algorithm, tends to layout cycles as circles

and spreads out nodes away from this central component

(2a). This type of layout is informative and sometimes used

in the literature. It can indeed be obtained form the GA with

a parameter set mimicking what GEM would do using its

default parameters. However, we may use a target layout for

this graph positioning the backbone cycle on the periphery

of a rectangle. Because the GA is capable of searching

all combinations of node parameters, it also can produce

a layout constraining the backbone cycle to an elliptical

shape (2b). This example shows the capability of the GA

of producing a wide variety of layouts for a same graph.

It is also worth noting that the smaller star-shaped com-

ponents have been positioned in similar manners. This

underlines the effect of the similarity metric in the choice

of genomes and ultimately in the final layout.

VI. CONCLUSION & FUTURE WORK

This paper presented two main contributions. We have first

designed an enhanced version of a force-directed algorithm

tuned into a highly parametrizable layout. Using a genetic

algorithm to guide the search of parameter sets, we are able

to produce a wide variety of layouts of a same graph. This

feature is certainly useful when users have no predefined

visual encoding for their data. It may also be useful to

provide users with a panel of possible layouts from which

to choose.

Our second contribution is a similarity metric used as a

fitness function for the genetic algorithm. This metric is

used to compare two layouts of a same graph, based on

triangle congruence. The main advantages of this method are

its insensitivity to planar homotheties and its computational

cost, lower than other methods inspired from Procrustes
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analysis. This similarity metric can furthermore be tuned

in order to act locally.
These two contributions are a step towards a more ambi-

tious goals. We are currently working on different methods

to automatically evaluate a graph drawing, based on data

accumulated from past executions. We also plan to expand

the GA framework and include curiosity guided exploration.

Once such a system is built, we may expect novice users to

simply load their data and select the most appropriate graph

from a proposed selection. We could even and act on the

learning process and make the system aware of the users

preference to guide future layouts.
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