Rapport de recherche interne : RR-1469-13
Reusable genomes : Welcome to the green genetic
algorithm world

Maurin Nadal

CNRS, LaBRIL,UMR 5800
& INRIA Bordeaux Sud-Ouest,
F-33400 Talence, France
Email: nadal @labri.fr

Abstract—The root motivation of this paper is to assist a
novice user for graph drawing by generating different drawing
for his data and let him choose the one which best fits his needs.
We chose to use a genetic algorithm to generate these drawings.
This paper focus on two main contributions which are ones of the
first steps to achieve this goal. The first one consists in changing
the way graph drawing GAs generally encode the genome. This
allows a better abstraction between genotype and phenotype. In
our project, each genome encodes a set of parameters for one
vertex. Then a modified force-based genetic algorithm compute
the resulting layout which is used to compute the fitness of each
vertex genome. The second contribution is an enhancement of
genetic algorithms (GAs) and cased-based genetic algorithms
to make genomes more reusable. This evolution allows for an
important increase in speed after a learning phase and also
allows for an increase in the quality of the results and in the
solution space coverage.

I. INTRODUCTION

Genetic algorithms (GAs) are a well-known paradigm
for solving complex problems. Many projects use them to
efficiently explore multi-dimensional spaces and to optimize
a defined fitness function. However, they require a significant
quantity of computation, and the classical definition of a GA
is sometimes not as efficient at addressing problems with a
large solution space.

Furthermore, for problems presenting multiple similar in-
stances, some basics computations must be performed at the
beginning of each execution. If a quick answer is required, this
process could be problematic, particularly for interactive GAs.
Another problem is the limited size of simulated populations;
compared to a “natural” GA, which utilizes a huge base of
available genomes, a simulated GA is limited to the size of its
genome pool. This problem can be addressed by keeping some
interesting genomes in an auxiliary population, where the GA
can pick genomes when a new generation is populated.

The target of this work is to present the evolution of a
GA to make genomes reusable. The first step consists of
adding contextual and behavioral information to each genome
evaluation. The GA is then associated with a database to save
the interesting genomes of each execution and to load certain

Guy Melanon

CNRS, LaBRI,UMR 5800
& INRIA Bordeaux Sud-Ouest,
F-33400 Talence, France
Email: melancon@labri.fr

good genomes before the algorithm begins.

This enhancement of the genomes allows them to be described
in a new way. Genomes are not only containers for information
that become a phenotype after the evaluation but also a part of
a transformation function from a context to a behavior. If the
added information is sufficiently precise, then it is possible to
evaluate the new genome with a knowledge base by comparing
the transformation associated with the genome to those saved
in the database.

This method has been applied to graph drawing. The target
of the implemented GA is to generate a different drawing
for the same graph upon the user’s request. The user can
then choose the ones he likes, and the algorithm can further
explore the space in this direction. This method provides
several types of use to be considered: the learning phase, open-
ended exploration, a quick calculation to answer the user’s
request, and the further enhancement of selected drawings.
To address these multiple usages, the algorithm structure is
completely defined in an xml file. These xml files are built
from different base modules. Some are dedicated to interac-
tions with the database, the management of the information
contained in context and behavior, the fitness computation,
and the population generation. An external server allows one to
define different tasks (a set of graphs and a set of xml structure
files to use) to automate massive multiple executions.

Figure 1 presents the elements added to the classical GA
scheme to allow for genome reusability.

II. RELATED WORK

The main motivation of this work is to help novice users
in the complex domain of graph drawing. This problem was
well defined in the paper of Biedl et al. in 1998, “Graph
Multidrawing: Finding Nice drawings without defining nice”
[1]. The idea is that the novice user does not initially know
what is a good graph for his problem. The proposed solution
consists of offering several drawings of the same graph to
the user to let him determine by consultation the one that is
best for him. The subsequent problem highlight in this paper
is the generation of multiple drawings that are both different
and interesting.

Numerous projects have already used GAs for graph drawing.

Classical genetic algorithm

I_ - - - - - - - - - = Store result for
eersoneneens,, later executions
| . Save interesting
""-,_'Agenumss
I Y
_____ Next population Auxnla_ry)| Database
| generation populations
F i
s &Y
“;Eﬁ'ﬁl‘.‘a‘g.new
| | generations
database e
| I _4_»__,,....4----" Fill the initial
Initial population Wresreedermmmnirsiminenss population
L (- - e e e - - - = = 4
......................... » Component added to the classical genetic algorithm
Fig. 1. Some elements have been added to the classical GA scheme

The first such work was presented by Groves et al. in 1990
[2]. Some enhancements have been regularly published since
this date ([3], [4], [5]), based mostly on the description given
by Goldberg and Holland in 1988 and 1989 ([6], [7]). New
GA features developed by the community have been added
one by one to the graph drawing use case. However, some
problems persist, mostly with the genetic operators and in the
fitness evaluation. These problems will be detailed further in
the next section.

Several enhancements that have been added to the first
definition of the GA given by Goldberg et al. have influenced
our work. The multi-objective evaluation efficiency highlighted
for graph drawing by Barbosa et al. in 2001 [8] had a strong
influence on the structure of the presented GA. The research
on the variable probabilities for the genetic operator performed
by Srinivas [9] and the specialization of these operators drive
this project to allow for a fully configurable structure to the
algorithm. We were also influenced by the work of Goldberg
in 1991 on population sizing [10], which showed that the
correct population size is complex to determine and depends
on many algorithm parameters and on population convergence
in particular.

Our system can also be seen as an extension of cased-based
reasoning genetic algorithm introduced by Ramsey and
Grefenstette in 1993 [11]. This concept was firstly designed
to solve similar problems or to enhance adaptation to dynamic
environments. The works of Louis et al. focus more on solving
similar static problems [12], [13], which corresponds to what
we do. The idea is that genetic algorithm efficiency could be
increase by initializing the population with good solutions get
from previous executions. One of the main contribution of
this paper is to enhance this principle by extensively interact
with saved solutions, to initialize the population, but also
to automate the evaluation and to set up a curiosity guided
exploration of space. Ashlock’s work on hybridization of
population [14] contains also lots of information about how
to manage population and their hybridization.

Some ideas have also been taken from other branches of
machine learning, particularly the open-endedness research
concept presented by Lehman et al. in 2008 [15]. This idea

V= {A B C,D,E}

E = {AB.AC.AD.BE.CD.DE}

Layout :

X ¥
A 1 3
B 2.8 2.6
c 2 2
¥
D 1 1
E 2.4 1t

Fig. 2. A simple graph drawn and the corresponding layout.

consists of defining a fitness that is calculated from the
novelty of the behavior obtained with a genome. This method
allows for multiple types of exploration of the space and
could also be used as part of a more complex fitness function
to avoid local extrema.

As a database is also used in association with the GA,
some techniques from the data mining community are very
interesting. One method used in this paper, the kd-tree,
as presented by Bentley in 1975 [16], is used to index
k-dimensional data to easily obtain the neighborhood of a
genome; the characteristics of this neighborhood will be more
formally defined later in this paper. Classifiers and feature
sub-set extraction are also studied but are not yet used.

III. GRAPH DRAWING AND GAS

A graph is a pair formed from a set of vertices, named
V, and a set of the edges linking them, named E. Drawing a
graph consists of giving a position to each vertex, and a set
of positions is named the “layout”. Figure 2 presents a basic,
simple graph with five vertices and six edges, with a layout
that corresponds to the drawing. Several quality metrics have
been defined on the layout; some of the main ones are the
counts of the edge crossings and vertex overlapping, which
must be minimized, and the ratio between the Euclidean
distance in the layout divided by the topological graph
distance (the count of the edges in the shortest path between
the two vertices), which must be constant. However, there is
no mathematical way to define a graph drawing as “beautiful”,
mainly because it depends upon the user and his needs.

GAs have been used many times for graph drawing, but
as far as we know, in all GAs used for graph drawing, the
genome directly encodes the layout as a pair of coordinates
for each vertex. Some algorithms place also the vertices
within a bounded grid to limit the size of the solution space.
This approach gives rise to two major problems:

e With regard to the genetic operator and for crossovers
in particular, the basic crossover of two layouts
consist of taking the position of the first half of the
vertices in the first parent and the remainder in the
second parent. The major cons of this method are that

most of the properties of the layouts are lost in this
process. Unless the two layouts are similar, the count
of the edge crossings in the resulting layout may
not related to the count of its parents. We make the
hypothesis that there is a lack of abstraction between
the genotype and phenotype.

e The second problem stems from the reusability of re-
sults. When the user wants to draw a graph, unless this
graph has already been drawn, it is extremely difficult
to used precedent computations. Even if a graph with
the same count of vertices has already been drawn,
if the set of the edge differs even slightly, then the
layout will not be adapted. The entire algorithm must
therefore be executed for each graph. This necessity
is problematic if the user is waiting for the result of
his request. In this case, the algorithm should give a
quick answer so that it can at least determine the user’s
preferences about different types of drawings.

This project aims to correctly address these problems by
adding two main contributions :

e To increase the abstraction between the genotype and
phenotype, we associate a genome with each vertex,
and this genome contains a set of parameters for
a force-directed algorithm. This type of algorithm
simulates a physical system in which each vertex is
a mass and each edge is a spring. The system is
simulated until stabilization is achieved and vertices
reach their final positions. The parameters consist of
the mass of the vertex and the coefficient of the forces
applied to it (attraction, repulsion, gravity, and shaking
that consists of a random movement). The algorithm
used to draw the graph is GEM (Graph EMbedder
algorithm), presented by Frick et al. in 1995 [17],
with a slight modification to consider a value for
each parameter for each vertex. This means that the
genotype encode a set of these six parameters (and
by the become totally independent of the number
of vertices of the graph) and the phenotype is the
position of the vertex in the layout resulting of GEM
computation.

e For each evaluation of a genome, we associate the
context of the evaluation and its behavior after or
during the evaluation. This information is stored in a
database. Then, in later executions, it will be possible
to quickly obtain a set of interesting genomes for some
context to obtain quick results for a precise request.
The context and behavior will be more formally de-
fined in the following section. This is an extension of
cased based genetic algorithm, which already used a
problem context to identify similar problems already
resolved. The main contribution consists to add the
behavior to allow new interactions with auxiliary pop-
ulation, as automatic evaluation and curiosity guided
exploration.

A third contribution, which is more a required feature of
our framework, consists to use an extremely configurable
algorithm. As there is multiple ways to exploit the information
attached to evaluated genomes and auxiliary population, each

| Genome |

I Y I

Ewvaluator

I
Fitness

Before evaluation During evaluation After evaluation

Evaluator

description

Evaluator

Context Behavior

Fig. 3. The context and behavior describe the evaluation environment before
and after the evaluation.

execution of the genetic algorithm can be completely defined
by the user. That means to choose how the initial population
is created, how each generation is population, the fitness
definition, the way to select and to use genomes contained in
auxiliary population. Our framework allow to execute multi-
ples executions and compare them easily in order to determine
which ones are most effective to achieve our goal.

IV. CONTEXT AND BEHAVIOR

This section defines the context and the behavior more
formally. The main objective of these two elements is to
find interesting genomes for precise situations. As is shown
in Figure 3, the context is generated before the evaluation
and describes the environment in which the genome will be
evaluated and the behavior is the state of the environment after
the evaluation. This last description should be focused on the
impact of the genome during the evaluation. Of course, the
content of those two elements depends on the use case for
which the GA is applied.

A. Definitions

e Context: The context must describe, as precisely as
possible, the situation in which the genome will be
evaluated. It should be calculated before the genome’s
evaluation, and it must be independent of the genome.
For the graph use case, the context is formed from
topological metrics, such as the degree, betweenness
centrality, closeness, and clustering coefficient of the
vertex that will be associated to the genome. All of
these metrics are computed from the graph topology
(the vertices and edges) and do not require any layout
(which is the position of each vertex within a draw-
ing). To the extent possible, the context information
must be independent of the execution-related informa-
tion, which will not be liable in any other execution
(as, for example, the ID of the node in a graph).

e Behavior: The behavior contains information about
the phenotype of the genome. It should describe how
a genome “reacts” when it is used in this specific
context. In the graph use case, the behavior is formed
from graphical metrics that are computed from the
layout. The main metrics are the average length of

description

the node’s edges, the average distance of the closest
vertices, and the standard deviation of the ratio
between the Euclidian distance and graph distance
between this node and the other nodes.

The aim of this information is to make possible the
selection of interesting genomes in later executions. Interesting
genomes will be those that produce a good result in a similar
context. For this selection to work, the context and behavior
must satisfy certain conditions.

B. Context and behavior quality

Numerous contexts and behaviors could be considered for
a use case. The following measures can help the designer to
select those that are the most interesting to him. Some are also
related to the GAs and the structures of the genomes.

e Reproducibility: This parameter could be considered
to be the most important quality. Reproducibility
means that the same genome used in the same context
will always produce the same behavior. This result is
not always possible, such as when the phenotype of a
genome depends on other genomes that are evaluated
at the same time. Nevertheless, the behaviors obtained
with a genome/context pair must be as close to each
other as possible.

e Continuity: This measure could be considered to be
an extension of reproducibility: it means that a genome
that is reused in a similar context will produce a
similar behavior. This parameter is most important
when we want to explore some new context because
the database will not contain a perfect match.

e Quantitative comparability: Context and behavior
should be easily and quickly comparable. The result
of the comparison must be numeric to be used in
selection and evaluation algorithms.

e Expressiveness: The context and behavior must pre-
cisely describe the evaluation situation and phenotype
of the genome. In fact, two different evaluation situ-
ations must be associated with different contexts. For
example, in a graph drawing use case, if the context
is only formed by the degree of the vertex, then it
is largely insufficient because two different vertices
sharing the same degree can have a different role in
the graph. The same constraint is present between the
phenotype and behavior.

C. GAs and genome constraints

To efficiently use the context and the behavior, the GA
design must satisfy two constraints based on the genome
definition:

e Genome universality: Any genome must be usable in
any context. This constraint must be verified to allow
for genome reusability. For example, in graph drawing,
the GA that uses a genome formed by the layout of
the graph (x and y coordinate for a two-dimensional
layout) will not satisfy this constraint because the

genome will be usable only for graphs with the same
number of vertices.

e Genome abstractness: Genomes and the genes that
form them must have a sufficiently abstract link with
the behavior. The aim of this constraint is to conserve
some behavioral property during crossover and muta-
tion. For example, in graph drawing, if the genome is
formed by the position of each vertex, then most of
the graphical properties will be lost during crossing
over with different genomes. In our case, each vertex
has a genome, and it contains information about how
the vertex will interact with others during the drawing
(the coefficient of the force that will be applied to it).

V. GA STRUCTURE

Once the context and behavior have been associated to a
genome, it becomes possible to save them apart from the main
population to reuse them later. This possibility offers multiple
ways to enhance the GA depending on which genomes are
saved and when and how they are reused. It is necessary to be
able to easily modify the structure of the algorithm to exploit
efficiently these multiple possibility.

To achieve this goal, the library uses an xml description in
which all of the modules and their interactions are defined.
By editing this description, the user will choose how the
initial population is generated, and then for each step of
the algorithm, he will choose how the step ends, how the
population for the next generation is generated, and how
the fitness of each genome is computed. The choice of xml
external file allow to easily execute multiple execution with
the same structure to compare them to others afterwards.

As shown in Figure 4, a description file is made from
several blocks. Each block can have different parameters and
can allow for a certain type of child block. The root of the
structure is always a "GA” block.

A strong separation is made between blocks that are
independent from the use case and those that are dependent,
mostly to compute the fitness or to select the genomes in
an interesting way for the evaluation environment. Sixty-three
blocks are currently implemented: 50 for the GA core and 13
for the graph drawing use case. Of course, new blocks can be
easily added. An inheritance structure is defined between the
blocks; a child slot can accept abstract blocks, and they are
filled by any implementation of those abstract blocks.

A. geneticAlgorithm and step blocks

The two most important blocks are the geneticAlgorithm
and step blocks.

The first block is the root at any xml description file, and
there is always only one per file. Several subblocks could or
must be added to it as follows:

e A population initializer, which determines how the
first population is generated. Some genomes can come
from the database.

e At least one step (there could be more) that defines
the manner in which the algorithm works during the
execution. A more precise description will follow.

genetic algorithm|

filteredPopula tir.:-n|

name="savedGenomes" saveToDatabase="true"

sglPopulationInitializer
query="SELECT ..."

step |

gra phEualuatorl

fitnessCriterion'
fitness description using different criterion blocks

opulationﬁeneratorl

c rossoverl
mainPopulationl

=

annexPopulationl

| name="savedGenomes"|

identit yForTheBest'

mainPopulationl

Fig. 4. A simplified GA structure with one auxiliary population and one step

e Some auxiliary population, where genomes can be
saved during an execution. It is possible to add a
population initializer to fill the population before the
launch of the algorithm and a filter to delete or make
regular actions on genomes, which is mostly used
to delete useless genomes and duplicates. The last
possible child is an indexer, which is used to change
the manner in which the genomes are picked in the
population, allowing for the possibility of contextual
picking.

The second block is the step. This block was first designed
to allow for the evolution of genetic operator probabilities
along the GA, inspired by the work of Srinivas [9]. The final
design of this block allows one to define the entire workflow
of the algorithm with the following subblocks:

e A population generator that is similar to the population
initializer but also allow generators, which need a
previous population. The user will choose the chance
for crossovers, mutations, and every other operator
that can be defined for his use case. The method for
picking genomes is also very important and must be
precisely defined.

e Some terminators, which define when the step will
end. The most classical terminator is the genera-
tionNumberTerminator, but there are also termina-
tors based on the average score, the convergence of
the population, or some Boolean factor, which allows
the user to define any Boolean operation he needs to
determine when a step must end.

e An evaluator used to evaluate genomes and compute
fitness. This evaluator must be implemented by the
user, and it is entirely dependent on the use case.

For the graph drawing use case, a tulipEvaluator has
been defined to interpret the parameters contained in
the genomes and to generate the layout. The fitness
computation is based on criteria that allow the user to
easily change the fitness definition from one step to
another.

e Some genome selectors, which indicate at the end
of each generation whether a genome must be saved
before deleting. This decision could be made based
on the computation of the context, the behavior, the
score, the distance between this new behavior and the
ones already saved, or even randomly. This selection is
applied to every evaluated genome, so it is important
that it has a low computational cost.

e A population manager to allow the algorithm to simu-
late island evolution or any type of parallel evolution.

VI. AUXILIARY POPULATION AND GA CONFIGURATION

This section presents the basic principle of the enhance-
ments added to the GA. The auxiliary population is explained
first, and then, different ways to simulate multi-objective
evaluations are shown.

A. Auxiliary population

The auxiliary population is the root of the GA enhancement
of this project. This population stores certain genomes so that
they can be reused in the current execution or stored in the
database. The following three modules are needed to add an
auxiliary population to the GA:

1) An auxiliary population to store saved genomes.

2) A selector to indicate when an evaluated genome
should be saved. Multiple types of selectors exist,
and new ones can be added easily.

3) A genome dealer to insert genomes picked from
the auxiliary population during the generation of the
new population. These genomes can be used during
crossover and mutation or can be added to the main
population unchanged, as defined in the population
generator block of each step.

A basic usage of auxiliary population consists of defining
the following steps for the algorithm:

1) The first step consists of populating an auxiliary
population with interesting genomes. This process
typically begins with a random population. This step
is close to the classical GA; the only difference is
that depending on the selector, any evaluated genome
could be saved in the auxiliary population.

2) The second step consists of a wide exploration around
the saved population. The population generator is
mainly based on the saved population. It is also
possible to keep a random part of the main population
in the next generation to allow for the appearance of
unexpected behaviors.

3) The last step consists of exploring the close neighbor-
hood of the saved population by making crossovers
and small mutations in the saved genomes. This
step had a high convergence to obtain a good final

-20 n ‘__- L]
L et
UM 1 gt]
LR
.ol

fitness
e
S

10 20 30 40 50 60 70 8O 90 100 110 120 130
generation

140 150 160 170 180 150 200

|}GA with auxiliary population -e- Classical GA|

Fig. 5. The system is simulated until stabilization is achieved and vertices
reach their final positions.

population. This last population and saved population
could be saved in the database if they are interesting
(for example, in terms of novelty).

As Figure 5 shows, using an auxiliary population allows
for a slight increase of the score and a better stability of the
fitness.

B. Multiple objectives evaluation

Multiple objectives evaluations are now fairly common
in GAs. In our library, the fitness of a genome must be
a simple scalar. However, different methods allow one to
simulate multiple fitness levels efficiently. These three methods
will be presented in the following section:

1) Multiple auxiliary populations
2) Step with different fitness definitions
3) Non-linear fitness

1) Multiple auxiliary populations: The first and most sim-
ple method to simulate multi-objective fitness is to define one
auxiliary population by an objective. For each objective, a
population will save the best genomes using an associated
selector. Then, a part of the main population will come from
this auxiliary population.

The user can select the influence of this auxiliary popula-
tion in the population generator. In the case where a strong
specialization is wanted, it is possible to include crossing
over or mutation only with the genomes that come from the
auxiliary population. However, it is often interesting to cross
good genomes for different objectives to make a thorough
exploration of the solution space.

It is also possible to fill the auxiliary populations from
genomes taken from the database at the beginning of the
algorithm to accelerate the process.

2) Step with different fitness definitions: When adding a
step in the structure of the GA, the user must define how
the fitness is computed. The fitness is typically the same for
all steps, but it is also possible to define completely different
fitness levels to create an evolution gap. To increase the chance
to explore a new part of the space with these gaps, it could be

interesting to always randomly save a small part of the main
population before a gap.

It is possible to use a different auxiliary population for
each step to separate each type of ”good” genome. Then, two
approaches are possible for population generation: promote
good genomes for the current fitness or use the genomes from
previous steps to build a melting pot of all specializations.

3) Non-linear fitness: Much freedom is given to the user
for fitness definition. It uses criteria that allow one to describe
any operation tree using values obtained from the context,
behavior, and fitness as leaves.

All of the basic operations are available (addition, multi-
plication, exponents). It is also possible to select the maximum
of a series of arguments and to use bandpass filter. These last
two features provide alternative solutions for simulating multi-
objective evaluations. Of course, the following fitness can also
be part of a more complex fitness.

Min/Max fitness: When multiple fitness levels are avail-
able, it is possible to use a maximum to associate a genome
with its maximal fitness. For this to work correctly, the fitness
must have been normalized previously.

Adaptive fitness: Bandpass filters allow the user to
define complex operations. They allow one to define a first
function, to determine whether the filter is active or blocks the
signal, and a second function that corresponds to the signal.
These filters allow the user to define complex fitness levels,
which can be applied to different situations:

e Defining some bonus fitness when a certain score is
achieved so that different fitness levels with increasing
complexities can be defined.

e Adapting the fitness to the context and the behavior.
It is often useful to adapt the evaluation of a genome
depending on the context of its evaluation. In graph
drawing, an important vertex with a high degree must
be drawn differently from a little vertex that is far
from the center of the graph.

An advanced application of adaptive fitness will be explained
in the next section with the auto-evaluator.

VII. ADVANCED USE OF CONTEXT AND BEHAVIOR

As we have observed, by configuring the GA correctly,
it is possible to assess different problems. However, with
the increasing amount of genomes available, it could be
hard to pick a good genome for a crossover, particularly if
the fitness of genomes depends on context. To address this
problem, the population can be indexed to more easily find
interesting genomes. This technique is the main topic of the
next paragraph. Later in this section, we will give more details
about other possibilities for context indexing.

A. Context indexing

Two types of indices have been implemented in the library.
The first one is an exact indexer, which provides quick access
to all genomes sharing the exact same context for which a
genome is needed. This type of index is possible in graph
drawing because the same graph is drawn several times, as

-10
2 A AT PPN o,
30 N“.‘.." []
w0 z°
‘,‘I
50 -
[
E»n pan | . ™
= BU? M"‘] o [| | & |
5ol | He b"w "o ™ [BN S R]
100 | ﬂ-.'-E J. b AN -;.'- il :
ol l 'y b ey |
120 |
aso] |
140 1 B

0O 10 20 30 40 50 60 O 80 S0 100 110 120 130 140 150 160 170 180 150 200 21C

generation

|{ Classical GA -8 GA with indexer -+ GA with indexer and database|

Fig. 6. Score comparison on a larger graph (46 nodes) of a classical GA (red),
a GA using an indexer (blue) and a GA using an indexer and the database
(green).

the context of a vertex depends only on the topology of the
graph, which does not change from one evaluation to another.
Of course, this method cannot always be used, but it allows
for a good specialization of the genome for a precise context.
This index could be as efficient as the data structure allows
(for example, in graph drawing, the ID of the node and the
graph name are key for the context of this node).

The second type of index allows one to efficiently find the
neighborhood of a context to search for genomes that work
well in a similar situation. We use a kd-tree as an indexer,
for which the user describes the dimensions he wants with
criteria. The kd-tree is a variation of a tree allowing for multi-
dimensional data indexation. It was introduced by Bentley et
al. in 1975 [18], [16].

The index can be attached to a population and modify the
manner in which genomes are picked in the population. As
each genome is generated for a defined context, the context is
given as a parameter of the picking function. This allows one
to have large auxiliary populations without the risk of making
picking too difficult.

As shown in Figure 6, the classical genetic algorithm is
not enough efficient for more complex graphs. Using an index
for genome picking slightly slows down the algorithm but
increases the maximal score obtained by a genome. When the
database is used, the GA converge much quicker to the best
score achieved for this graph.

1) Behavior targeting: It is also possible to index a part
of the behavior. This could be useful when a certain type of
behavior is targeted. It becomes possible to try certain genomes
that obtain the desired type of behavior, even if the context is
different. This process also allows one to gather a significant
amount of information about how genomes and context are
linked to produce the behavior.

B. Curiosity-driven exploration

It is sometimes difficult to efficiently explore a large
portion of the solution space, particularly when it presents
many local maxima. In this situation, getting good space

coverage could be really interesting for many applications. The
context and behavior can be used to obtain a score depending
on the novelty introduced by a genome.

We employ the kd-tree indexer to achieve this goal. The
kd-tree allows us to quickly obtain the neighborhood (in terms
of the context and behavior) of an evaluated genome. Then, the
novelty introduced by the genome corresponds to the distance
to its first (or its k-first) neighbors.

It then becomes possible to execute a certain type of GA,
where the fitness is defined by the novelty to explore space.
By immediately adding the interesting genomes to the indexed
population (the one used to compute the novelty), we are also
sure that each selected genome is different from the other
genomes in the population.

An interesting enhancement of this last execution consists
of using the novelty divided by a basic fitness to undergo a
sparse exploration in areas that are associated with a bad score
and a precise exploration in interesting areas.

This curiosity criterion could also be used in an exploratory
step, for example, with a basic first step that makes a classic
exploration of the space. This step ends with a generation
counter or a threshold on the convergence of the population.
Then, the next step is based mainly on the first population and
uses a bounded curiosity criterion to explore a limited part of
the space around the saved population of the first step. A last
step could then work on a refinement of all of the genomes
that were found since the beginning of the algorithm.

Moreover, as we will see in the next section, it is important
to obtain a wide space coverage in the database to allow for
the auto-evaluation of fitness. This curiosity criterion is often
used to address this problem.

C. Auto-evaluation of fitness

One of the most complicated tasks in the GA is to define
a good fitness function. This problem becomes impossible in
the context of an interactive GA, where what is good depends
mostly on the user and thus could not be defined at the creation
of the algorithm. However, even in non-interactive GAs, a
simple function is often not sufficiently expressive to describe
a complete fitness that can identify whether a genome is fit in
any given situation.

This problem is omnipresent in graph drawing, where it
is not possible to define what is a beautiful. This definition
changes from one user to another and depends on the usage of
the graph and the type of information to be extracted. However,
it is possible to find some graph drawings that are considered
to be good by most of the community. These graphs make a
set of good examples.

It then becomes possible to fill the database with those
examples and to create a similarity fitness (by comparing the
target drawing to the drawing obtained with the GA) to give
a score to each genome (the drawn graph must be one of the
example set). Once this fitness has been defined, a learning
phase can begin. The curiosity criterion is used to obtain good
space coverage, where ’good” means that the maximal distance
between two contexts/behaviors is less than the mean of the
similarity fitness of the two corresponding genomes.

Once the database has been filled, it is possible to define a
new auto-evaluation of the fitness. This last step works by
finding a set of neighbors for the genome to evaluate and
then inferring the score of this genome and the score of the
neighboring genomes.

This type of fitness is quite adaptive because the way to
evaluate the behavior depends first on the context. Moreover,
it is also possible to make this evaluation on a chosen subset
of genomes when the user wants to obtain a certain result.

1) Interactive auto-evaluation: For an interactive GA, it
could be interesting to couple the basic fitness and precedent
user evaluation to infer the score of a genome. This method
has two major advantages:

e The auto-evaluator learns the preferences of the user.

e The distance from a genome and the genomes that
have already been evaluated by the user can provide
hints regarding the selection of the genome to later be
evaluated by the user and can identify the ones that
will bring more information to the auto-evaluator.

However, this type of interactive auto-evaluation has not
been integrated into the project.

VIII. CONCLUSION AND FUTURE WORKS

This paper presents two main contributions, one which

concern general genetic algorithm. It consists on an extension
of case-based genetic algorithm by adding also behavior re-
lated information to evaluated genomes and using auxiliary
populations which interact with main population during an
execution. Doing so open a lot of possibility on how to drive
the genetic algorithm. We also presented how our genetic
algorithm is configurable to exploit efficiently these numerous
possibilities.
The second contribution is more centred on GA used for graph
drawing. We define a new genome encoding paradigm for this
context. Instead of encoding a whole layout, genome encode
a set of parameters for only one vertex. This allow a better
abstraction between genotype (a set of floating parameter) and
phenotype (the position in the layout), which is interesting for
keeping good traits through genetic operation. This make also
the genome independent with the graph drawn (and mostly its
vertex number).

However, there is still more work to be conducted, and four
major needs have been identified. First, all of these techniques
must be applied extensively to our graph drawing use case.
This application will allow for a better understanding of how
each technique works and how they must be used to maximize
their efficiency. Different parameters must be tested, and it also
important to couple some of these parameters to learn how they
interact.

The second point is focused on data mining. After several
executions, the database contains a significant amount of infor-
mation about the problem, such as how context and behavior
are linked and how certain types of genes affect the phenotype.
Moreover, to set up a good GA, it is important that the user
obtains information about how an execution worked.

A monitoring interface is already present in the control client,
but it must be enhanced and must present an easily readable

summary of what was appended during the execution. This
information will allow the user to determine the precise
efficiency of a GA structure.

Another path to explore is the different ways to implement
the auto-evaluator. The result obtained with the kd-tree could
be enhanced by using a non-linear classifier, such as a decision
tree. The solution space is not always continuous, and linear
classifiers are not adapted in certain situations. The data mining
community is very active in this field and has presented
numerous solutions that could be useful for this research.

The last topic to consider is the interactive part of the GA.
Due to the structure of the library, this consideration should be
possible without heavy modifications. The most complicated
task will be to use the user evaluation that will be stored in
the database in an efficient manner.

REFERENCES

[1] T. Biedl, J. Marks, and K. Ryall, “Graph multidrawing: Finding nice
drawings without defining nice,” Graph Drawing, 1998.

[2] L. Groves, Z. Michalewicz, P. V. Elia, and C. Z. Janikow, “Genetic
algorithms for drawing directed graphs,” for Intelligent Systems,, 1990.

[3]1 A. Markus, “Experiments with Genetic Algorithms for Displaying
Graphs,” pp. 62-67, 1991.

[4] C. Kosak, J. Marks, and S. Shieber, “Automating the Layout of network

diagrams with specified visual organization,” IEEE Transactions on
Systems, Man, and Cybernetics, vol. 24, no. 3, pp. 440-454, 1994.

[5] U. A. Gen, D. Grafos, and D. T. Eloranta, “TimGA: A Genetic
Algorithm for Drawing Undirected Graphs,” Computer, vol. 9, no. 2,
pp. 155-171, 2001.

[6] D. Goldberg and J. Holland, “Genetic algorithms and machine learning,”
Machine Learning, pp. 95-99, 1988.

[7]1 D. Goldberg, Genetic Algorithms in Search, Optimization, and Machine
Learning, addison we ed., A. Wesley, Ed., 1989.

[8] H. Barbosa and A. Barreto, “An interactive genetic algorithm with co-
evolution of weights for multiobjective problems,” Proceedings of the
Genetic and Evolutionary ..., pp. 203-210, 2001.

[9] M. Srinivas and L. Patnaik, “Adaptive probabilities of crossover and
mutation in genetic algorithms,” Systems, Man and Cybernetics, IEEE
..., vol. 24, no. 4, pp. 656-667, 1994.

[10] D. Goldberg, K. Deb, and J. Clark, “Genetic algorithms, noise, and the
sizing of populations,” Complex systems, 1991.

[11] C. Ramsey and J. Grefenstette, “Case-based initialization of genetic
algorithms,” ... Conference on Genetic Algorithms, 1993.

[12] S. Louis and J. Johnson, “Solving similar problems using genetic
algorithms and case-based memory,” ... International Conference on
Genetic Algorithms, 1997.

[13] S. Louis and J. McDonnell, “Learning with case-injected genetic
algorithms,” Evolutionary Computation, IEEE ..., vol. 13, no. 0704,
2004.

[14] D. Ashlock, K. Bryden, and S. Corns, “Small population effects and
hybridization,” ... Computation, 2008. CEC ..., 2008.

[15] J. Lehman and K. Stanley, “Exploiting open-endedness to solve prob-
lems through the search for novelty,” Artificial Life, vol. 11, no. Alife
Xi, p. 329, 2008.

[16] J. Bentley, “Multidimensional binary search trees used for associative
searching,” Communications of the ACM, 1975.

[17] A. Frick, A. Ludwig, and H. Mehldau, “A fast adaptive layout algorithm
for undirected graphs (extended abstract and system demonstration),”
Graph Drawing, 1995.

[18] J. Friedman, J. Bentley, and R. Finkel, “An algorithm for finding best

matches in logarithmic expected time,” ACM Transactions on ..., vol.
1549, no. July, 1977.

